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Abstract  

Jump discontinuities occurs for switching in systems of different types and such systems pose moderate to 

crucial difficulties in their mathematical modelling. Undesired jumps are encountered frequently in different 

process responses and electrical systems. For such jumps, the task of function approximation and system 

analysis become significantly complex in the frame work of orthogonal functions. 

If such approximations are polluted with much error, then the final result is also affected and degraded. In 

this paper, an improved technique using the conventional orthogonal hybrid functions (HF) model has been 

employed to analyse and identify any system with input jump discontinuity more accurately than conventional 

methods using BPF or orthogonal HF set.   

Results are found to be much more reliable than those obtained via conventional hybrid function analysis. 

The method is computationally attractive because it uses function samples as expansion coefficients, along 

with recursions. 
 

Keywords: Hybrid functions, Jump discontinuity, System modelling, Analysis, Sample-based analysis. 

I. Introduction 

Modelling of control systems had been under the scanner of researchers working in the area since 

about the 70’s [1-3] of the last century. In the decades that followed, study of control systems spread 

almost exponentially. In present day research, researchers are probing the area of modelling as well 

as simulation more intimately so that designed systems work almost at the desired level.  

For this purpose, researchers sought resort to various techniques involving non-sinusoidal 

orthogonal functions or piecewise constant orthogonal functions [4-6]. The reasons for such choice 

were: 

a) These functions are staircase in nature and thus are more suitable for computerised control, 

b) These functions can be integrated or differentiated by operational techniques, thus converting 

differential or integral equations into equivalent algebraic expressions leading to simpler 

algorithms and simpler solutions. 

c) As a bonus, while working with these functions, we need less computer memory and the 

algorithms use less computational time. 
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Thus, piecewise constant orthogonal functions added a new dimension to system modelling. 

Many researchers proposed modelling of systems using these functions [4-6]. 

These functions started their journey with Haar functions [7, 8], followed by Rademacher 

functions and Walsh functions. Of all such functions, the BPF set was the most fundamental [9]. But, 

these functions being of staircase type, produced results in the staircase form leading to higher mean 

integral square error (MISE) [4, 5].  

To reduce this MISE, a piecewise linear model was found more suitable to produce improved 

solutions. 

In 1998 Deb et. al., another piecewise constant orthogonal function set, termed sample-and-hold 

functions [10], and was implemented to solve issues related to discrete time control systems with 

zero order hold.  

A few years later, Deb et. al. introduced yet another set of orthogonal triangular functions [11], 

which provides solution in a piecewise linear pattern.  

These two orthogonal function sets were linearly combined, and form an effective orthogonal 

function set known as ‘hybrid’ function (HF) set [12]. This set approximates any time function in 

piecewise linear manner. Also, another advantage of using this function set was, if we dropped the 

triangular part of the solution obtained in HF domain, we were left with the piecewise constant SHF 

solution [10, 12]. 

The name ‘hybrid function’ being reasonably general, we may recall that many a researcher used 

this name to indicate a combination of two different types of function sets used together for system 

analysis. For example, Ref. [13] proposed a new ‘hybrid function’ set with the combination of BPF 

and Bernoulli polynomials. In 2017, [14] proposed another ‘hybrid function’ set for identifying a 

linear multi-delay systems via a combination of BPF and Taylor’s polynomials. And in 2018, he [15] 

came up with a different kind of ‘hybrid function’ set comprised of BPF and Legendre polynomials. 

After about a year, [16] presented yet another function set which was a combination of BPF and 

Chebyshev polynomials. This set of orthogonal function was applied for solving nonlinear optimal 

control problems having time-varying delays. 

Though many such instances may be sighted for ‘hybrid functions’, it is clear that no one has yet 

used the linear combination of SHF set and TF set to obtain piecewise linear recursive solutions. 

Many of the orthogonal function sets discussed above have been employed for studying different 

types of control systems abundantly. But none has been utilized by the researchers to approximate 

functions with jump discontinuities and subsequent modelling of control systems involving such 

discontinuities till date. 

 Analysis of systems having jump discontinuities in control face difficulties in their mathematical 

modelling. In the proposed work, it has been established that with the traditional hybrid function 

theory, the results obtained are not accurate. To obtain a more satisfactory as well as reliable result, 

an improved form of the hybrid function technique is employed to provide an improved theory. In 

this proposed approach, time functions involving jump discontinuities are approximated and 

integrated more efficiently, and reduces subsequent errors. This leads to more accurate and strongly 

acceptable results while dealing with the analysis of such systems. 

The present method uses samples of the functions under consideration similar to conventional HF 

set, but introduces some special modifications to yield more accurate results. It also reduces the 

MISE and the mathematical burden as well.  

http://www.jnxtgentech.com/
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This new algorithm can be employed in many other areas like process control and power 

electronics where jump situations are frequently involved. 

The paper is organized in a following pattern: 

(i) Brief review of hybrid functions (HF), 

(ii) Approximation of function in HF domain and BPF domain are theoretically studied and 

compared with respect to integral square error (ISE). Also, related conditions are derived. 

Numerical examples are treated to complement the developed theory, 

(iii) Approximation of functions with jump discontinuities using HFc, HFm and the proposed 

improved HF technique (HFcm) followed by an example, 

(iv) Comparison of respective ISE’s for approximation of jump functions, using the 

conventional approach (HFc) and the new modified approach (HFcm), 

(v) An example is treated elaborately to compare the MISE’s of HFc and HFcm approaches 

with BPF approximation used as the reference, 

Related tables and graphs are presented to validate the proposed work. 

 

II. Brief Review of Hybrid Functions (HF) [12] 

 

A linear combination of two orthogonal function sets, namely the SHF set and right-handed TF 

set, is known as the hybrid function (HF) set. A brief description of these two function sets is 

presented below: 

 

A. Sample-and-hold functions (SHF) [10] 

A time function f(t), being square integrable can be mathematically presented by one sample-and-

hold function set in the semi-open interval [0, T) as 

     1 10 0 1 1 m mi if t f S f S f S f S
 

                                                                        (1) 

where,  fi = f(ih), i = 0, 1, 2,  . . . , (m-1)     
           

In fact, f(ih) is the value of the function at t=ih. Thus, we call f(ih) as if  andthe if ’s are the 

expansion coefficients of f(t) in sample-and-hold domain.  

 

B. Triangular functions (TF) [11] 

We can form two sets of orthogonal triangular functions (TF), namely 1( ) ( )m tT and 2( ) ( )m tT , from 

a conventional set of m block pulse function, i.e., ( ) ( )m t . 

( ) 1( ) 2( )( ) ( ) ( )m m mt t t T T                                                                                                (2) 

where, 1( ) ( )m tT is defined the left-handed triangular function set and 2( ) ( )m tT  as the right-handed 

triangular function set. 

In defining the hybrid function (HF) set, the m-set right-handed triangular function (RHTF) has 

been used. For convenience, in the following, we write ( ) ( )m tT  instead of 2( ) ( )m tT . 

 

http://www.jnxtgentech.com/
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III. Brief Review of Hybrid Functions (HF) [12] 

For function approximation, the block pulse domain approach has the following disadvantages: 

(i) the approximation is always of staircase nature, and 

(ii) for computation of each block pulse function coefficients, we need one integration. So, 

for an m-term approximation of a function, we need to compute results of m integrations. 
 

For HF domain approximations of a function: 

(i) the function samples serve as the expansion coefficients, and 

(ii) the approximation is obtained in a piecewise-linear manner.  
 

It is obvious that HF domain approximation will generally come up with less MISE compared to 

approximation in BPF domain.  

In the following the integral square errors (ISE) associated with approximations in both BPF as 

well as HF domains, are investigated. 

Let us expand the function  f t  in BPF domain over m sub-intervals each of interval h.  The 

integral square error (ISE) for such representation is [4] 

     
2

1
2

BPF
00

d

T m

i i

i

f t c t t




 
  

 
                                                                                       (3) 

where, T=mh. 

ISE in the  1i  -th interval is 

     
 1

22

BPF
d

i h

i i i

ih

f t c t t



                                                                                         (4) 

Now, in the  1i  -th interval, we represent f(t) by its first order Taylor approximation as the 

linear function 

        f t f t f ih f ih t ih                                                                                     (5)                          

Hence, the amplitude of the approximated function at t =  1 isi h
 

     1f i h f ih hf ih      

Therefore, the BPF coefficient ci  of  f t  is  

     
   

2 2
i

f ih f ih hf ih
h

c f ih f ih

 
  
                                                               (6)    

So, using equations (5) and (6), (4) becomes 

          
  21

2

BPF
d

2

i h

i

ih

h
f ih f ih t ih f ih f ih t


    

         
    

  

 

Thus, ISE in the  1i  -th interval is 

   
3

2 2

BPF BPF
ISE

12
i

h
f ih                                                                                               (7) 
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So, for this interval, BPFISE 0 if  f ih is zero. 

Now, the function  f t  can be expanded in HF domain over m sub-intervals with sampling 

interval h.  The integral square error (ISE) for this case is  

         
2

1 1
2

1HF
0 00

d

T m m

i i i i i

i i

f t f S t f f T t t
 



 

 
    

 
   

where, 0 1, ,f f 2 1, , , , ,i i mf f f f  are the equidistant samples of f(t) and T = mh. 

In the  1i  -th interval, hybrid function representation of the function  f t  is expressed as  

   ˆ
i if t f m t ih                                                                                                           (8) 

where,  
   1

,i

f i h f ih
m

h

                                                                                                   (9) 

 For this case, the integral square error in the  1i  -th interval is 

     
 1

22

HF
ˆ d

i h

i

ih

f t f t t



   
 

 
Using equations (5) and (8), we write 

       
  21

2

HF
d

i h

i i i i

ih

f f ih t ih f m t ih t


  

        
  


 

 

Therefore, ISE in the  1i  -th interval is 

   
23

2

HF HF
ISE

3
i i

h
f ih m

 
    

 
                                                                              (10) 

In equation (10), HFISE  becomes zero when   if ih m . 
 

 

From (7) and (10) above, we have            

BPF HFISE ISE    
23 3

2

12 3
i

h h
f ih f ih m

 
   

 
   

3

3 2 2
12

i i

h
f ih m m f ih

  
    

    

Case I: When BPF HFISE ISE 0   

Then, either  3 2 0if ih m
 

  
 

or  2 0im f ih
 

  
 

 

That means, the conditions are  

 
2

3
if ih m and   2 if ih m . 

Case II: When BPF HFISE ISE 0 
 

Then, both  3 2 0if ih m
 

  
 

and  2 0im f ih
 

  
 

                                                  (11) 
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or, both  3 2 0if ih m
 

  
 

and  2 0im f ih
 

  
 

                                                       (12) 

The condition derived from (11) is  

 
2

2
3

i im f ih m                                                                                                            (13) 

This has been illustrated by Figure 1. 

The condition obtained from (12) is not meaningful and hence, may be discarded. 
 

Case III: When BPF HFISE ISE 0   

In this case,  3 2 0if ih m
 

  
 

with  2 0im f ih
 

  
 

                                               (14) 

or,    3 2 0if ih m
 

  
 

with  2 0im f ih
 

  
 

                                                           (15) 

The condition derived from expression (14) is  

 
2

3
if ih m and   2 ,if ih m  

 which means 2 if ih m                                                                                              (16) 

 

The condition derived from expression (15) is 

 
2

3
if ih m and   2 if ih m

 

Which means  
2

3
if ih m                                                                                                   (17) 

 

 

Figure 1: For HF domain approximation to be better than equivalent BPF based approximation,
 the 

figure shows the range (shaded portion) of  f ih  in terms of im . 
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A. BPF versus HF: Comparison of Computational Burden 
 

It is to be noted that for computation of expansion coefficients of function under study in HF 

domain, simply the function samples are needed and further mathematical manipulations are spared, 

except subtractions. That is, for HF expansion of any function in m sub-intervals over a time period 

T,  1m   equidistant samples of the function are required and then we only need to compute m 

number of subtractions with all the 2m coefficients. 

But for BPF domain expansion of the same function in m sub-intervals over a time period T, we 

need to compute m number of numerical integrations over m sub-intervals each of width h seconds. 

For performing these numerical integrations, we need to consider n mini-intervals within each sub-

interval of width h. That is, in effect, we need to work with  m n  samples and subsequently

 m n  divisions. Thus, the computational burden is increased at least  m n  times compared to the 

computational effort in case of HF coefficients. 

 

IV. Illustrative Examples for Comparison of ISE 

Example 1: 

Consider a function    1 sinf t t   in the interval  0,1 st . We take m = 8 and expand  1f t  in 

BPF domain as well as in HF domain. 

To check whether condition (13) is satisfied, let us focus our interest in the third interval, that is, 

 0.25, 0.375 st , as shown in Figure 2. The slope of the function at t = 0.25 is  

   1 0.25
0.25 cos 2.2214

t
f t


                                                                                   (18) 

 

 

Figure 2: Taylor approximation of f1(t) = sin(t) along with its HF domain and BPF domain 

approximations in the interval (0.25, 0.375)s, referred to Figure 1. 
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Now we compute im as defined by equation (9), to get 

1.73418im   

2
Thus 2 3.46836 and 1.15612

3
i im m                                                                    (19) 

Study of (18) and (19) proves that condition (13) has been satisfied. 

 

Example 2: 

Similar to the last example, let us now consider the function    2 sin 5f t t    in the interval 

 0,1 st . We take m = 8 and expand  2f t both in BPF domain and in HF domain, as shown in 

Figure 3. 

Now let us focus our interest in the sixth interval, that is,  0.625, 0.75 st , as shown in Figure 4. 

The slope of the function at t = 0.625 is  

   2 0.625
0.625 5 cos 5 14.5122

t
f t


                                                                         (20) 

Now we compute im as defined by equation (9), to get 

2.59538im                                                                                                                          (21) 

2
Thus 2 5.19076 and 1.73025

3
i im m                                                                     (22) 

Study of (20) and (22) proves that condition (16) is satisfied. 

 

V. Function with Jump Discontinuities and its Approximation in HF domain 

 

Analysing systems with jump discontinuities in input functions, using any orthogonal function 

sets leads to an unacceptable error at the very initial stage of function approximation. This 

inaccuracy pollutes rest of the analysis leading to unacceptable results. 

Approximation of such functions in conventional HF domain, provides piecewise linear 

reconstructions having approximation error within reasonable limits. But with functions having jump 

discontinuities, such approximations attract more error in the sub-intervals containing the jumps. 

This infects the final result with error. 

Considering all these aspects, a modified approach was suggested by Deb et al. [12] termed as the 

‘modified’ HF domain approach. To distinguish between the conventional HF domain approach and 

modified HF domain approach, we use the subscript ‘c’ for the former and ‘m’ for the later. That is, 

when any function  f t  is approximated through conventional HF, we call it  cf̂ t , and when the 

function  f t  is presented via the modified hybrid function method, we call it  mf̂ t . 

In this section, we may mention yet further improved method of function approximation with 

jump discontinuities in HF domain. Let us approximate any function  f t  approximated via this 

approach and call it  cmf̂ t .
 

If the function with jump discontinuity is a complex one, the HFm approach fails to approximate it 

in an error-free manner. This will be apparent from the typical function considered below 

http://www.jnxtgentech.com/
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       3 exp 3 ( )f t u t t u t Hu t ih                                                                            (23) 

i being a positive integer. 

The function is presented in Figure 5. This function may be approximated via HFc and HFm 

approaches, and the attempts are illustrated in Figures 6(a) and 6(b) respectively. It is observed that 

both the approximations contain large errors in the i-th sub-interval compared to other sub-intervals. 

To reduce such error, a further improved HF domain approach is proposed in the following.
 

As a first step, we decompose f3(t) as shown in Figure 7. From this figure, we realise that the 

function of Figure 7(a), i.e. u(t), may be represented via HFc approach in an exact fashion. Also, the 

second part of this function, shown in Figure 7(b), i.e., exp(-3t)u(t) may be represented via HFc 

approach with tolerable error. And, obviously, the remaining part shown in Figure 7(c), a delayed 

step function, may be approximated exactly using the HFm approach.  So, we can approximate the 

entire function f3(t) with a combination of HFc and HFm approaches. We call this approach the HFcm 

approach. 

 

Figure 3: Graphical comparison of function approximation in between the HF domain and the BPF 

domain approach for the function f2(t) = -sin(5t), for m = 8 and T = 1 s, along with the exact plot. 
 

We see that,  3f t is comprised of three parts: two parts are without jump (ignoring the jump of a 

step function at t = 0), that is,  1 ( ) and exp 3 ( )u t t u t , and the remaining part, ( )Hu t ih , which 

involves a jump. 
 

http://www.jnxtgentech.com/
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Figure 4: First order Taylor approximation of f2(t) = -sin(5t) along with its approximations in HF 

domain and BPF domain in the interval (0.625, 0.75)s (refer to Figure 3). 

 
Figure 5: The function f3(t) with a jump discontinuity at t ih . 

We can now expand  f3(t) in HF domain as under : 

3,cm
ˆ (1 1) [1 exp( 3 )] [1 exp( 6 )] [1 exp{ 3( )}]f h h ih       

   [1 exp{ 3( 1) }]
m

m h   S  

[exp( 3 ) 1] [exp( 6 ) exp( 3 )] [exp( 3 ) exp{ 3( 1) }]h h h ih i h         

   [exp( 3 ) exp{ 3( 1) }]
m

mh m h    T

 
       0 0 0 0 0 0

m m
H H H S T             (24) 

 

                                   (i+1)-th term  

http://www.jnxtgentech.com/
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First part of (24) employs the HFc approach, while the second part uses the HFm approach. 

Approximation of this function f3(t) using the new HFcm approach is presented in Figure 8. We see 

that this approach provides almost an exact representation of f3(t) and is superior to both the HFc 

approach and the HFm approach. This is because f3(t) could be expressed as a combination of a jump 

and a non-jump functions. 

However, a point should be noted that for clarity of representation, the samples appearing on the 

curve have not been joined by straight lines to show HF domain piecewise linear approximation. 

Since we can approximate a delayed step function using the HFm approach with zero error, we 

can conclude that for reconstruction of equal width staircase functions, HFm approach will always be 

able to produce HF domain approximations without any error. 

 
(a)                                                                         (b) 

Figure 6: Approximation of f3(t) of Figure 5 using (a) the HFc and (b) the HFm approaches, for m 

sub-intervals, T s and 
T

h
m

 s. 

 

 
 

Figure 7: Decomposition of the function f3(t) of Figure 5.  

 

If the function is not linear, but is a curve with one or several jumps, we can still decompose the 

function in different parts---the curvy part and other parts containing delayed step functions of 
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different magnitudes. The continuous curvy part may be approximated using the traditional HFc 

approach as in (24) above and the associated delayed step functions may be approximated using the 

HFm approach in an error-free manner.
 

Thus, the combined approach, that is the HFcm approach, surely will be capable to reduce the 

error involved in approximation further, compared to the methods, like the BPF, HFc and the HFm 

approaches.  

 

 
 

Figure 8: Approximation of f3(t) using the HFcm approach. 

 

To summarise the three techniques in general form, we consider a function f(t) having several 

jumps in t  [0, T). The function f(t) may easily be presented as a combination of a non-jump 

function component and n (say) jump function components. That is 
 

             
1 2 3nj j j j j jni

f t f t f t f t f t f t f t                                           (25) 

where  njf t is the non-jump function component, 

and  ji
f t is the j i -th jump function component. 

That means      
1

nj j

n

i
i

f t f t f t


                                                                                (26) 

 

In equation (26), the function f(t) has jump discontinuities at n number of time instants, i.e., 

1 2j , j ,  ..., j ,  ..., j , being a positive integer.i nt h h h h i This assures that jumps at all the instants are 

integral multiples of h.  

Hence, for approximation of f(t) via HFm approach, we make use of the generalised J matrix and, 

following the spirit of (25), may write 

   
T T

S T , ,..., ...,  ( )1 2j j j , j
ˆ ( )

m mmni
f t  F S F J T                       

                                                       (27) 
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where, 
 , ,..., ...,  ( )1 2j j j , j 1 1 0 1 1 0 1 1 0 1 1 0 1 1

m mni
J  

 

                                                         j1-th                j2-th             j(n-1)-th              jn-th 

                                                      element          element          element          element 
 

and 0

0 0

a b c

a b c a b

a

 
 
 
  

 

In equation (27), the entire function f(t) is addressed as a whole. 

 Now, for the HFcm approach, we consider equation (25) and make use of the decomposition. That 

is, we expand the continuous component and write 
 

     
T T

S Tnj nj nj
ˆ

m m
f t F S F T                                                                                               (28) 

 

 For the jump function components of (25), we see that this part is really a sum of different 

delayed step functions having different amplitudes. As mentioned above, jump points of all these 

functions coincide with different integral multiples of h. Combination of these functions produces a 

staircase function. Such a staircase function, when expanded via HFm approach, will have only the 

SHF component, the TF components being zero. Thus, the expansion of the jump function 

components of (25) may be written as  

     
T T

1
S Tj j j

n

m m
i

i
f t



 F S F T                                                                                            (29)
 

T

Tjwhere, F is a null matrix. 

Then, using (26) and (27), complete HF domain description of f(t) of (25) via HFcm approach is 

given by  

     
1

nj j

n

i
i

f t f t f t


 
 

           
T T T T

1
S T S Tnj j nj nj j j

ˆ ˆor,
n

m m m m
i

i
f t f t



    F S F T F S F T

 

     
T T T

S S Tnj j njm m
  F F S F T                                                                                             (30) where, 

T

TjF isa null matrix. 

In the following section, function approximation of f (t) with a jump interval via HFc, HFm and 

HFcm approaches, and comparison of ISE’s for such approximations are taken up and discussed in 

detail. 
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VI. Comparison of ISE’s for Jump Function Approximation via HFc and HFcm 

Approaches: Theory 

Let a function  f t with a jump discontinuity be expanded using HFc approach (  cf̂ t ) and HFcm 

approach (  cmf̂ t ). We intend to study and compare the integral square error (ISE) of these two 

approaches. And also, for the sake of clarity, we employ the HFm (  mf̂ t ) approach  

 

Figure 9: Approximation of the function f (t) with the jump interval using (a) the HFc approach (b) 

the HFm approach, and (c) the HFcm approach, for m sub-intervals, T s and 
T

h
m

 s, and estimation 

of error where the exact function f (t) has been replaced by its first order Taylor equivalent  f t . 

 

and study the pros and cons of all the three approaches to reach some useful conclusions. These three 

approximations of  f t in the jump interval are illustrated in Figures 9(a), 9(b) and 9(c). 

In the  1 thi   jump interval, we can represent f(t) by its first order Taylor approximation ( ( )f t

)as 

        f t f t f ih f ih t ih                                                                                   (31)  

In the  1i  -th interval, HFc based representation of the function  f t  is expressed as  

       c
ˆ

if t f t f ih m t ih                                                                                        (32) 

where,  
   1

,i

f i h f ih
m

h

                                                                                                  (33) 

Referring to Figure 9(a), it is noted that at the jump point t = (i+1)h, ideally, we have two values 

of the function,  1f i h   and  1f i h    , where  

   1 1f i h f i h H            
where, H is the jump amplitude at t = (i+1)h. 

Thus, we may have two possible slopes in HF domain reconstruction, given by (9) and (33). 

For this case, the ISE in the  1i  -th jump interval, from (31) and (32), is 

     
 1

22

cHFc
ˆ d

i h

i

ih

f t f t t



  
 
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 
23

3
i

h
f ih m

 
  

 
                                                                                                         (34) 

 

From equations (9) and (33), we can write 

i i

H
m m

h
                                                                                                                       (35)  

Therefore, using relation (35), (34) can be written as 

 
23

HFcISE
3

i

h H
f ih m

h

 
   

 
                                                                                      (36) 

Now, we consider the HFm approach. 

With this approach, the function is reconstructed in the jump interval via a SHF having an 

amplitude f(ih). Comparing this approximation with the first order Taylor equivalent of f(t) given by 

(31), we express the ISE as 

         
  21

2

HFm
d

i h

i

ih

f ih f ih t ih f ih t


  

     
  

  

 
23

HFmor, ISE
3

h
f ih

 
  

 
                                                                                              (37) 

Comparing (36) and (37), we can write 

 
3

HFc HFmISE ISE 2
3

i i

h
m m f ih
 
    
 

                                                                        (38) 

Using equation (38), we can study the different cases depending upon the nature of the function. 

Figure 10 illustrates a typical function and its approximations in the jump interval using first order 

Taylor series, HFc and HFm approaches. 

In the following, we study different cases of approximation and related integral square errors. 
 

Case I: In (38), when  HFc HFmISE ISE  

 2 0ih m f ih
 

   
 

.                                                                                                       (39) 

Thus, we have,  2im f ih   
 

Case II: When HFc HFmISE ISE  

0im  and  2 0ih m f ih
 

   
 

, or vice versa.                                                               (40) 

Hence, for this case, either 0im  and  2im f ih   

or, 0im  and  2im f ih 
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Figure 10: A typical function f (t) and its approximations in the jump interval using first order Taylor series, 

HFc and HFm approaches. 

 

 

Figure 11: A typical function f (t) and its approximations in the jump interval using first order Taylor series, 

HFc and HFcm approaches. 

 

Case III: When  HFc HFmISE ISE  

0im  and  2 0ih m f ih
 

   
 

.                                                                                     (41) 

Here we have, either 0im  and  2im f ih   

or, 0im  and  2im f ih  . 

If we consider the HFcm approach for approximating the function, the ISE in the  1i  -th jump 

interval can be mathematically expressed as  

 
23

HFcmISE
3

i

h
f ih m

 
  

 
                                                                                           (42) 

Therefore from (36) and (42), we can write the relationship between two ISEs as 

 
2

2
HFc HFcm

2
ISE ISE

3 3
i

H h
h H f ih m

  
     

  
                                                         (43) 
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From equation (43), we can study the following cases. 

 

Case I: When HFc HFcmISE ISE  

 
2

22
0

3 3
i

H h
h H f ih m

  
    

    

 or,
2

i

H
h f ih m
 

  
 

                                                                                                 (44) 

which implies,   if ih m ,considering H to be positive. 

 

Case II: When HFc HFcmISE ISE
 

 
2

i

H
h f ih m
 

  
 

                                                                                                        (45) 

 

Case III: When HFc HFcmISE ISE  

 
2

i

H
h f ih m
 

  
 

                                                                                                        (46) 

As in the case of condition (44), condition (46) also implies that   if ih m , considering H to be 

positive. 

In Figure 11, a typical function f (t) and its approximations in the jump interval using first order 

Taylor series, HFc and HFcm approaches have been shown. 

 

VII. Comparison of MISE’s for Jump Function Approximations via HFc and HFcm 

Approaches: Numerical Example  

In Figures 6(a) the HFc method reconstructs the function f3(t), while in Figure 6(b), the HFm 

approach approximates the function. Study of these two approximations shows that though for many 

cases the HFm approach is superior to HFc approach, its superiority cannot be ensured in a general 

manner. This has also been proved through equations (39), (40) and (41). But when we employ the 

HFcm approach, f3(t) is reconstructed in Figure 8, thereby reducing the approximation error which is 

apparent from inspection of the Figures 6 and 8.
 

Now we take up a numerical example to establish the issue. 

Example 3: 

Let us consider the function f3(t) of Figure 5, having a jump at t = ih = 0.5 s (say) and the jump H 

= 0.5. Calling this function f4(t), we can write 

 
 

 4

1 exp 3 for 0.5

1.5 exp 3 for 0.5

t t
f t

t t

  
 

  
                                                                               (47) 
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This function is approximated via the HFc approach using the spirit of equation (28) and via the 

HFcm approach using the spirit of equation (30). 

The function f4(t) may be decomposed as 

         4 exp 3 0.5 0.5f t u t t u t u t                                                                        (48) 

This decomposition helps to show that the HFcm approach reconstructs the function making the 

approximation error a minimum. 

Now we consider the function f4(t) and approximate the same via the HFcm approach. 

It is clear from (48) that the function contains a delayed unit step function as a component. We 

now go for a combination by expressing the non-jump component functions by HFc approach and 

the jump component function via HFm approach following equation (30). That is, for m = 10 and T = 

1 s, we express the component functions of f4(t) in HF domain as 
 

       4,nj exp 3f t u t t u t  

 0.00000000 0.25918178 0.45118836 0.59343034 0.69880578
 

  10
0.77686984 0.83470111 0.87754357 0.90928204 0.93279449 S

 

0.25918178 0.19200658 0.14224198 0.10537545 0.07806405
 

  10
0.05783127 0.04284246 0.03173847 0.02351244 0.01741844 T  

       104, j 0.5 0.5 0 0 0 0 0 0.5 0.5 0.5 0.5 0.5f t u t   S  

     5 10 10
0 0 0 0 0.5 0 0 0 0 0 J T  

Following equation (30), we write 

     4 4,nj 4, jf t f t f t 
 

0.00000000 0.25918178 0.45118836 0.59343034 0.69880578
 

  10
1.27686984 1.33470111 1.37754357 1.40928204 1.43279449 S

 

0.25918178 0.19200658 0.14224198 0.10537545 0.07806405
 

  10
0.05783127 0.04284246 0.03173847 0.02351244 0.01741844 T  

     5 10 10
0 0 0 0 0.5 0 0 0 0 0 J T

 
 

Thus, the above function f4(t) has been approximated using the improved HF domain approach in 

the best possible way. 

Table 1 tabulates the MISE’s of approximation of f4(t) via block pulse function approach along 

with the HFc and the HFcm approaches for different sets of m. It has also been noted that MISE for 

the HFcm approach is less than the BPF domain approach and the HFc approach. Thus, the 

approximation via the HFcm approach proves to be the best for all values of m.  
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Figure 12 depicts the variation of MISE’s with the number of sub-intervals m using the BPF, HFc 

and HFcm approaches. 

The comparison of two different HF domain approximations with respective BPF approximation 

will be clearer if we define two ratios of MISE’s as 

BPF
BPF-HF

HF
c

c

MISE
R

MISE
 

BPF
BPF-HF

HF
cm

cm

MISE
and R

MISE
 

All the ratios are computed and tabulated in last two columns of Table 1, where the ratios speak 

for themselves. It is noted that BPF-HFc
R is always less than one. This is contrary to our general 

expectation. And that is why, cell-wise MISE for the three approximations, namely, BPF based 

approximation and two HF based approximations---HFc, and HFcm has been investigated for m= 10 

and T= 1 s. Those results are presented in Table 2. 

Further, with increasing value of  m, say from 10 to 100 or even to still higher values, it is noted 

from Table 1 that the HFcm method is always more accurate, with respect to MISE, compared to 

BPF or HFc based approximations. 

Table 1: HF domain approximations of the function f4(t) of Example 3 and its comparison of MISE’s 

using the HFc and the HFcm approaches along with BPF domain approximation, for increasing 

values of m with T = 1 s. 

Number of 

sub-intervals 

used  

(m) 

MISE using 

BPF 

approach 

(MISEBPF) 

MISE using 

HFc 

approach 

(MISEc) 

MISE using 

HFcm 

approach 

(MISEcm) 

BPF

c

c

HF

BPF-HF

MISE

MISE

R

 

BPF

cm

cm

HF

BPF-HF

MISE

MISE

R

 

 

10 
 

0.00123578 
 

0.00824798 
 

0.00001111 
 

0.14982820 

 

111.23132313 

20 0.00031103 0.00415614 0.00000070 0.07483627 444.32857143 

30 0.00013841 0.00277467 0.00000014 0.04988341 988.64285714 

40 0.00007789 0.00208202 0.00000004 0.03741078 1947.25000000 

50 0.00004986 0.00166600 0.00000002 0.02992797 2493.00000000 

60 0.00003463 0.00138850 0.00000000 0.02494058 Inf 

70 0.00002544 0.00119023 0.00000000 0.02137402 Inf 

80 0.00001948 0.00104150 0.00000000 0.01870379 Inf 

90 0.00001539 0.00092581 0.00000000 0.01662328 Inf 

100 0.00001247 0.00083325 0.00000000 0.01496550 Inf 

 

From Table 2 it is noticed that for the interval immediately before the jump instant, MISE is 

maximum, which is 0.08237329 for HFc and for HFcm minimum and is only 0.00000456. For the 

same interval, with approximation in BPF domain, MISE is 0.00050707. Whereas for all other cells, 

HFc and HFcm methods have the same MISE and its magnitude is much less than that of BPF 
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method. Aso, the sum of MISEs of all the ten intervals for HFc or HFcm methods, excluding the 

interval just before the jump instant, is only 0.00010650 and the same is 0.01185074 for the BPF 

method. This detailed study proves the efficiency of HF based approximation and indicates its 

superiority over the BPF technique. 

 
Figure 12: Approximation of function of Example 3, with T = 1 s, and comparison of MISEs for 

increasing values of m, with the BPF, HFc and HFcm approaches. 

 

Table 2: Approximations of the function f4(t) of Example 3 for m = 10 and T = 1 s, and its cell-wise 

comparison of MISEs with BPF, HFc and HFcm based approaches. 

Sub-interval 

no. for m =10, 

h= 0.1 s 

T= 1 s 

Segment- 

wise MISE 

using BPF 

approach 

 

Segment- 

wise MISE 

using HFc 

approach 

Segment- 

wise MISE 

using HFcm 

approach 

1  0.00558955 0.00005024 0.00005024 

2 0.00306761 0.00002757 0.00002757 

3 0.00168354 0.00001513 0.00001513 

4 0.00092395 0.00000830 0.00000830 

5 0.00050707 0.08237329 0.00000456 

6 0.00027829 0.00000250 0.00000250 

7 0.00015273 0.00000137 0.00000137 

8 0.00008382 0.00000075 0.00000075 

9 0.00004600 0.00000041 0.00000041 

10 0.00002525 0.00000023 0.00000023 

VIII. Conclusion 

In this paper, we have utilised the hybrid function domain to present a HF-based improved 

approach to approximate time functions involving jump discontinuities, with improved accuracy. 

Compared to approximation in traditional hybrid function domain, or orthogonal triangular function 

http://www.jnxtgentech.com/


  
 Journal of Next Generation Technology (ISSN: 2583-021X) 

Vol. 2, Issue 1, May 2022 

 

www.JNxtGenTech.com    21 
 

and block pulse function domain approximations, this modified approach has amply reduced the 

mean integral square error (MISE). This improvement has been tested with a few numerical 

examples. 

When handling functions with jump discontinuities, e.g., their approximation or integration, this 

paper has proved the superiority of the HF based improved technique over HF based conventional 

approach analytically.  
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